
Born to Be Parallel,
and Beyond

Original work by Carrie Ballinger - Cloud Performance Architect
Revised and updated by Douglas Ebel - Director, Technical Product Marketing
09.22 / TERADATA VANTAGE

WHITE PAPER

https://www.teradata.com

2

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Teradata’s Enduring Performance
Advantage

Teradata’s ability to solve the most complex
analytics problems of our day is unmatched.
Available today in an array of deployment
options, Teradata’s history has evolved from
an on-prem analytics appliance where limited
resources drove deep expertise in workload
management and query optimization. In the
cloud, this same expertise translates into
superior execution performance without the
risk of costs escalating out of control.

Teradata customers from every industry and around
the world depend on Teradata for predictable price
performance and mission-critical reliability to run
their business. The performance offered by Vantage
empowers them to run analytics that would be too
expensive or time-consuming otherwise. For example,
allowing them to continuously run predictive models on
every household in their markets rather than only simple
models on a subset of customers.

To ensure that we continue to deliver on the promise
of Teradata, we have continuously invested in the
architecture of our core analytics engine. As we have
done so, we continue to follow key tenets that arose
from being born at a time of scarcity because we believe
that although resources in the cloud may be infinite,
budgets are not.

The enduring performance advantage of the Advanced
Analytics Engine is a direct result of early, somewhat
unconventional design decisions made by a handful of
imaginative architects. Intended for a more technical
audience, this paper describes and illustrates some of
these key fundamental components of the Advanced
Analytics Engine that are as critical to performance now
as they were then, and upon which today’s features and
capabilities rest.

Table of Contents

2	 Teradata’s Enduring Performance Advantage

3	 Multidimensional Parallel Capabilities

5	 Parallel-Aware Optimizer

6	 Bynet’s Considerable Contribution

8	 A Flexible, Fast Way to Find and Store Data

10	 Workflow Self-Regulation

13	 Workload Management

14	 Conclusion

15	 About Teradata

https://www.teradata.com
https://www.teradata.com

3

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Discussions of these specific areas are included in
this paper:

	• Multidimensional parallel capabilities

	• A parallel-aware query optimizer

	• The BYNET’s considerable contribution

	• A flexible and fast way to find and store data

	• Internal self-regulation of the flow of work

	• Managing the flow of work externally with
Workload Management

It is important to note that the scope of this whitepaper
is limited to important, foundational components of
database performance. It is not a comprehensive
discussion of all the aspects of the Teradata
AdvanceAnalytics Engine or the platform.

Multidimensional Parallel Capabilities

Everything in Vantage is parallelized—from the entry
of SQL statements to the smallest detail of their
execution—to weed out any possible single point of
control and to effectively eliminate the conditions that
can breed gridlock in a system. It is this foundational
architecture, dating back to our humble beginnings, that
continues to deliver unmatched performance and the
best price per query in the market today.

The Teradata basic unit of parallelism is the AMP
(Access Module Processor), a virtual processing unit
that manages all database operations for its portion of
a table’s data. Many AMPs are typically configured on a
given node. (20 to 40 or more are common.) Everything
that happens in a Teradata system is distributed across
a pre-defined number of AMPs with each AMP acting
like a microcosm of the database, supporting such things
as data loading, reading, writing, journaling, and recovery
for all the data that it owns. (see Figure 1). Importantly,
parallel units work cooperatively together behind
the scenes—an unusual strength that drives higher
performance with minimal overhead.

Types of Query Parallelism

While the AMP is the fundamental unit of parallelism,
there are two additional parallel dimensions woven into
the Advanced Analytics Engine, specifically for query
performance. These are referred to here as “within-a-step”
parallelism, and “multi-step” parallelism. The following
sections describe these three dimensions of parallelism:

Parallel Execution Across AMPs

Parallel execution across AMPs involves breaking the
request into subdivisions, and working on each subdivision
at the same time, with one single answer delivered. Parallel
execution can incorporate all or part of the operations
within a query and can significantly reduce the response
time of a request, particularly if the query or function
reads and analyzes a large amount of data.

Parallel execution is usually enabled in Teradata by
hash-partitioning the data across all the AMPs defined
in the system. Once data is assigned to an AMP, the AMP
provides all the database services on its allocation of data
blocks. All relational operations such as table scans, index
scans, projections, selections, joins, aggregations, and
sorts execute in parallel across the AMPs simultaneously.
Each operation is performed on an AMP’s data
independently of the data associated with the other AMPs.

.

Figure 1. Inside a unit of parallelism.

AMP 4

AMP 3

AMP 2

AMP 1

Loading

Building
Indexes

Reading/Writing

Row Locking Sorting

Aggregating

Transaction
Journaling

Backup and
Recovery

…

…
AMP 1’s Data

https://www.teradata.com
https://www.teradata.com

4

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Within-a-Step Parallelism

Within-a-step parallelism is when the optimizer carefully
splits a request into a small number of high-level
database operations and dispatches these distinct
operations for execution in a process called pipelining.
Here each operation can continue on without waiting for
the completion of the full results from the first operation.
The relational-operator mix of a step is carefully chosen
by the Teradata optimizer to avoid stalls within the
pipeline. (see Figure 2)

Multi-Step Parallelism

Multi-step parallelism is enabled by executing multiple
“steps” of a query simultaneously, across all the
participating units of parallelism. One or more tasks
are invoked for each step on each AMP to perform the
actual database operation. Multiple steps for the same
query can be executing at the same time to the extent
that they are not dependent on results of previous steps.

This automated multifaceted parallelism is not easy
to choreograph unless it is planned for in the early
stages of product evolution. In addition to these three
dimensions of parallelism for each query, such as
described here, we will see additional elements below
that ensure that Teradata customers get maximum
value from every system. It is important to note, the
Advanced Analytics Engine applies these multiple
dimensions of parallelism automatically, without user
intervention, hints or special setup.

The figure shows four AMPs supporting a single query’s
execution, and the query has been optimized into 7
steps. Step 1.2 and Step 2.2 each demonstrate within-
a-step parallelism, where two different tables are
scanned and joined together (three different operations
are performed). The result of those three operations is
pipelined into a sort and then a redistribution, all in one
step. Steps1.1 and 1.2 together (as well as 2.1 and 2.2
together) demonstrate multi-step parallelism, as two
distinct steps are chosen to execute at the same time,
within each AMP.

Multi-Statement Requests

In addition to the three dimensions of parallelism shown in
Figure 3, Multi-Statement Requests allow several distinct
SQL statements to be bundled together and sent to the
optimizer as if they were one unit. These will be run in
parallel as long as there are no dependencies among the
statements. More importantly, any sub-expressions that
the different statements have in common will be executed
once, and the results shared among them (see Figure 4).

Figure 2. Pipelining of 4 operations within one query step.

AMP 4

AMP 3

AMP 2

AMP 1

Select and project Product table

Select and project Inventory table

T
im

e
1

–
 S

ta
rt

 s
te

p

Join Product and Inventory tables

Redistribute joined rows to other AMPs

T
im

e
2

T
im

e
3

T
im

e
4

 –

S
te

p
 d

o
n

e

Figure 3. Multiple types of parallelism combined.

Scan Stores

1.1

Join spools

Redistribute2.1

Join spools

Redistribute3

Sum step

4

Return final
answer

5

Join Product
and Inventory

Redistribute1.2

Join Items
and Orders

Redistribute2.2

WITHIN-A-STEP
PARALLELISM
Multiple operations
are pipelined
1. Scan Product
2. Scan Inventory
3. Join Product

and Inventory
4. Redistribute

joined rows

MULTI-STEP
PARALLELISM
Do step 1.1 and 1.2
and also steps
2.1 and 2.2
simultaneously

QUERY EXECUTION
PARALLELISM
Four AMPs
perform each step
on their data
blocks at the
same time

https://www.teradata.com
https://www.teradata.com

5

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Parallel Use of I/O

In addition, the Advanced Analytic Engine supports
synchronized scanning of large tables. This permits a new
full-table scan to begin at the current point of an ongoing
scan of the same large table in another session, thus
reducing the I/O load and supporting higher concurrency.

Parallel-Aware Optimizer

Having an array of parallel techniques can turn into a
disadvantage if they are not carefully applied around the
needs of each request. Orchestration of the different
parallelization techniques is driven by our optimizer, which
takes on a number of tasks to ensure optimal use of
resources. The optimizer lives within a component called
the “Parsing Engine” or PE. The default configuration uses
two PEs per node with each capable of coordinating the
query planning, coordination of execution, and returning
results for 120 sessions each. A four node system would
have 8 PEs supporting 960 sessions and a 24 node
system would have 48 PEs supporting 5,760 sessions.
This is both scalable and fault tolerant by eliminating
single points of congestion or failure.

Join Planning

Joining tables in a linear fashion (join table1 to table2,
then join their result to table3, and so on) can have a
negative impact on query time.

Instead, the Teradata optimizer accesses and joins
multiple tables simultaneously and also leverages
different types of joins (e.g. indexed access, table scan)
to build a more intelligent query plan.

The Teradata optimizer seeks out tables within the
query that have logical relationships between them and
also groups tables that can be accessed and joined
independently from the other subsets of tables. Those
are often candidates to execute within parallel steps.
Figure 5 illustrates the differences when optimizing a
six-table join between a plan that is restricted to linear
joins, and one that has the option of performing some of
the joins in parallel.

Sizing up the Environment

In addition to the parallelism methods described above,
the optimizer takes into account numerous other factors
including the profile of the data itself, the number
of AMPs on each of the nodes and the processing
power of the underlying hardware. Putting all this
information together, the optimizer comes up with a
price in terms of resources expected to be used for each
of several candidate query plans, then picks the least
costly candidate. Considering many factors including
movement of data, the lowest cost plan is the plan
which will take the least system resources to execute on
the wide variety of platforms that we support.

Hiding Complexity

Unlike other solutions, Teradata’s optimizer completely
automates the complexity behind query planning.
Users have complete freedom to submit everything from
simple tactical queries to very complex ad hoc analytic
queries and the optimizer will ensure that all requests
are delivered in the most efficient manner. This allows
customers to build complex data models with dozens of
joins which provides a richer dataset for analytics.

Evolution

Although the fundamentals have remained the same, the
Advanced Analytics Engine has continued to evolve over
time to meet customer needs. This includes everything
from the ability to support tables with no primary index
to stage data for in-database transformation or push-
down processing by client tools or new types of joins.

Figure 4. A multi-statement request.

Access
Pricing Data

Access
Pricing Data

Access
Customer Data

Access
Store Data

Individual
SQL statements
performed one

at a time
A multi-statement request

performs individual SQL statements in parallel

Return all three answer sets

Access
Customer Data

Return answer set

Access
Store Data

Return answer set

Return answer set

https://www.teradata.com
https://www.teradata.com

6

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

There are now nearly 20 join strategies that are chosen
automatically by the optimizer. It will incrementally plan
and execute when there is uncertainty about the size of
an intermediate result set, and it will re-write queries to
eliminate redundant logic. The goal is always the same:
ensuring that our customers enjoy the lowest cost per
query in the industry.

Being Parallel in the Ecosystem

In today’s environment, data may reside in other file
systems or data management systems. Files in cloud
storage may be defined as foreign tables. The optimizer
will assign the task of reading and interpreting CSV,
Parquet or JSON files to AMPs. As with everything else,
the files making up a foreign table in cloud storage will be
assigned across the AMPs to be read in parallel.

Teradata’s Query Grid can be used to access data in
other data management systems The Advance Analytics
Engine’s optimizer can decide on whether to select the raw
data or push down some of the selection and aggregation
processing to the other platform to reduce the size of
data to be retrieved. Meanwhile, the optimizer may have

the AMPs performing other parts of the query processing
until the data is retrieved from the other DBMS.

BYNET’s Considerable Contribution

Another important component of the Teradata
architecture is referred to as the BYNet. This acts as the
interconnection between all of the independent parallel
components. (see Figure 6). Originally implemented
within the hardware of our on-premises systems, this
functionality is now implemented directly into the cloud
network facilities. Beyond just passing messages, the
BYNET is a bundle of intelligence and low-level functions
that aid in efficient processing at practically each point
in a query’s life. It offers coordination as well as oversight
and control to every optimized query step.

In short, the BYNet acts as flight coordinator ensuring
that the entire system is working in concert and managing
situations as they arise. This can include everything from
ordering results from across parallel units, adjusting to
hardware failures, or monitoring for points of congestion.

Figure 5. A bushy query plan vs. a serial plan.

TABLE 1 TABLE 2

JOIN TABLE 3

JOIN TABLE 4

JOIN

TABLE 1 TABLE 2

JOIN TABLE 5

JOIN

TABLE 3 TABLE 4

JOIN TABLE 6

JOIN

JOINTABLE 5

JOIN

JOIN

TABLE 6

Plan with parallel joins

Plan with serial joins

https://www.teradata.com
https://www.teradata.com

7

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Messaging

A key role of the BYNET is to support communication
between the PE and AMPs and from AMPs to other
AMPs. These simple message-passing requirements
are performed using a low-level messaging approach,
bypassing more heavyweight protocols for communication.

	• Sending a step from the PE to AMPs to initiate a
query step

	• Redistributing rows from one AMP to another to
support different join geographies

	• Sort/merging a final answer set from multiple AMPs

Even though message protocols are low-cost, the
Advanced Analytics Engine goes further by minimizing
interconnect traffic wherever possible. Same AMP,
localized activity is encouraged wherever possible.
AMP-based ownership of data keeps activities such as
locking and some of the simple data processing local to
the AMP. Hash partitioning that supports co-location
of to-be-joined rows reduces data transporting prior to
a join. All aggregations are ground down to the smallest
possible set of sub-totals at the local (AMP) level first
before being brought together globally via messaging.

It is notable that another side effect of this extremely
efficient coordination of AMPs is our ability to offer
exceptionally faster performance for tactical queries
than other vendors.

BYNET Groups

Without the BYNET’s ability to combine and consolidate
information from across all units of parallelism, each
AMP would have to independently talk to each other
AMP in the system about each query step that is
underway. As the configuration grew, such a distributed
approach to coordinating query work would quickly
become a bottleneck.

Instead, BYNET groups create a dynamic relationship
between AMPs that are working on a specific step
which keeps the number of AMPs that must exchange
messages down to the bare minimum. As a step begins
to execute, one or more channels are established that
loosely associate all AMPs in the dynamic BYNET group
that is executing the step. The channels use monitoring
and signaling semaphores in order to communicate
things like the completion or the success/failure of
each participating AMP. If a tight coordination did not
exist among AMPs in the same BYNET group, then
the problem-free AMPs would continue to work on the
doomed query step, eating up resources in unproductive
ways (Figure 7). In general, the only message that is set
back to the PE is the final completion message whether
the dynamic BYNET group is composed of three or
3000 AMPs.

Final Answer Set Sort/Merge

Never needing to materialize a query’s final answer
set inside the database has long been a Teradata
differentiator. The final sort/merge of a query takes
place within the BYNET as the answer set rows are being
funneled up to the client as needed. This happens at
the AMP, Node and finally PE level with only the highest
values being processed until the client needs more. The
final answer set never has to be brought together saving
considerable resources. A potential “big sort” penalty
has been eliminated—or actually, never existed.

Figure 6. AMPs and PEs communicate using messages.

AMP 0 AMP 1

Parsing
Engine

AMP 2

https://www.teradata.com
https://www.teradata.com

8

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

A Flexible, Fast Way to Find
and Store Data

Another very important factor behind the enduring
Teradata performance is how space is managed which
is done by a sub-system that is simply referred to as
the “file system.” The file system is responsible for the
logical organization and management of the rows, along
with their reliable storage and retrieval.

The file system in Teradata was architected to be
extremely adaptable, simple on the outside but
surprisingly inventive on the inside. It was designed
from Day One to be fluid and open to change. The file
system’s built-in flexibility is achieved by means of:

	• Logical addressing, which allows blocks of data to
be dynamically shifted to different physical locations
when needed, with minimal impact to active work.

	• The ability for data blocks to expand and contract on
demand, as a table matures.

	• An array of unobtrusive background tasks that do
continuous space adjustments and clean-up.

Teradata was architected in such a way that no space
is allocated or set aside for a table until such time as
it is needed. Rows are stored in variable length data
blocks that are only as big as they need to be. These
data blocks can dynamically change size and can be
moved to different locations on the cylinder or even to a
different cylinder, without manual intervention or end-user
knowledge. With the development of Teradata Virtual
Storage (TVS), the database will assess the frequency of
access of data and can move it between different speed
storage media to optimize response time for the end user.

This section takes a close look at how file system frees up
the administrator from mundane data placement tasks,
and at the same time provides an environment that is
friendly to change.

How Data is Organized

For data stored inside the database, Teradata
permanently assigns data rows to AMPs using a simple
scheme that lends itself to an even distribution of
data—hash partitioning. (Figure 8). In addition to being
a distribution technique, this hash approach to data
placement serves as an indexing strategy.

Figure 7. A completion semaphore.

Step 1
Work

Step 1
Work

B
Y

N
E

T
B

Y
N

E
T

S
of

tw
a

re

3
 A

M
P

s

Time 2

Step 1
begins
across

3 AMPs

Semaphore
for step

completion
is established

Message to
dispatcher

for next step

Semaphore
disbanded

Step 1
Work

Done

Step 1
Work

B
Y

N
E

T

Step 1
Work

Completion
semaphore
Count = 2

Time 3

Completion
semaphore
Count = 1

Time 4

Completion
semaphore
Count = 0

Time 1

Completion
semaphore
Count = 3

Done

B
Y

N
E

T

Step 1
Work

Done

B
Y

N
E

T

Done Done

Done

https://www.teradata.com
https://www.teradata.com

9

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

To retrieve a row, the primary index data value is passed
to the hashing algorithm, which generates the two hash
outputs: 1) the hash bucket which points to the AMP; and
2) the hash-ID which helps to locate the row within the
file system structure on that AMP. There is no space or
processing overhead involved in either building a primary
index or accessing a row through its primary index value,
as no special index structure needs to be built.

Hashed data placement is very easy to use and requires
no setup. The only effort a DBA makes is the selection
of the columns that will comprise the primary index of
the table such as customer number, order number or
product key. From that point on, the process is completely
automated. No files need to be allocated, sized, monitored,
or named. No DDL needs to be created beyond specifying
the primary index in the original CREATE TABLE
statement. No unload-reload activity is ever required.

Once the owning AMP is identified by means of the
hash bucket, the hash-ID is used to look up the physical
location of the row on disk. Which virtual cylinder and
sector holds the row is determined by means of a tree-like
three-level indexing structure (as shown in Figure 9).
It is enough to say here that the data is automatically
and dynamically indexed down to the exact data block for
exceptional retrieval speed.

This is incredibly important, especially for tactical queries
that are often leveraged by business applications.

Easy Accommodation of Data Growth

The Advanced Analytics Engine is built using a logical
addressing model as a low impact way to adjust to data
growth. Data for each table in a Teradata system is stored
in flexibly-sized data blocks that are assigned to logical
cylinders. The block assignment of a row is based on its
hash value. If a block grows beyond a DBA-specified
maximum size, it is automatically split to make room for
more rows and the cylinder index is updated. If a logical
cylinder gets full, blocks can be moved to a different
logical cylinder and the cylinder indexes are updated.
On retrieving a row, the hash of the primary index
identifies the AMP, the index of cylinders in the AMP point
to the cylinder, and the cylinder index points to the block
to be read. Figure 10 explains this behavior visually.

This adaptable behavior delivers numerous benefits.
Random growth is accommodated at the time it
happens. Rows can easily be moved from one location
to another without affecting in-flight work or any other
data objects that reference that row. There is never a
need to stop activity and re-organize the physical data
blocks or adjust pointers.

Figure 8. A row’s primary index hash bucket points to the AMP
that owns it.

AMP 1
AMP 2
AMP 3
AMP 4

A customer
row is inserted

Hashing algorithm produces
1. A hash bucket
2. A hash-ID

The hash
bucket

points to
one AMP

NODE 1

AMP 5
AMP 6
AMP 7
AMP 8

NODE 2

AMP 9
AMP 10
AMP 11
AMP 12

NODE 3

AMP 13
AMP 14
AMP 15
AMP 16

NODE 4

Figure 9. A three-level indexing structure identifies a row’s
location on an AMP.

Sorted List
of Cylinder

Indexes

Master Index

1 per AMP

Many per
AMP

Many per
cylinder

Sorted List of
Data Blocks

Rows Sorted
by Row-ID

Rows Sorted
by Row-ID

Rows Sorted
by Row-ID

Cylinder Indexes

Data Blocks

https://www.teradata.com
https://www.teradata.com

10

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

This flexibility to consolidate or expand data blocks
anytime allows the Advanced Analytics Engine to
do many space-related housekeeping tasks in the
background and avoid table unloads and reloads common
to fixed-sized page databases. This advantage increases
database availability and translates to less maintenance
tasks for the DBA.

Multi-level Row Partitioning

Added to this storage architecture is the ability to
partition the table by one or more columns to make
it faster to access data without the need of full table
scans or the costly maintenance of secondary indexes.
For example, a transaction table might be partitioned on
transaction date, week, or month. If a query constrains
on a period of time for those transactions, the optimizer
will figure out which partitions need to be read, whether
the table was partitioned on day week, month or other
time period ranges. You could also add additional
partitioning columns like country, district, or brand. A
query with a constraint on either partitioning column
or both will reduce the amount of data to be read to
satisfy a query. The hashed cylinder and row access is
accomplished within the defined partitions.

Column Partitioning

Tables can also be stored with columns in separate
partitions. This has the advantage of focusing I/O on
just the columns of data needed in a query instead of
the entire row. This also supports vertical compression
techniques where a value is stored once for use in
consecutive rows. Column partitioning can be combined
with row partitioning to further reduce the amount of I/O
needed to satisfy a query.

Indexes

The primary index for a table takes no space and by
calculating the hash value of a constraint on that
column, its row can usually be retrieved in a single I/O.
Partitioning also requires no space and allows for a
significant reduction in I/O and improvement in response
time. The Advanced Analytics Engine also supports
traditional secondary indexes. These are valuable with a
frequently used, high cardinality column exists such as
customer number on a table such as Orders where the
logical primary index for the orders table is the Order_ID.

Also supported are Join Indexes which are transparent
to the user or their BI tools but are leveraged by the
optimizer to eliminate join and aggregation processing.
As the base tables are maintained these join indexes
are automatically maintained. If one join index is a more
aggressive aggregation of another, after the base table
is updated, the lower-level aggregation is re-calculated,
then those values are aggregated to maintain the more
aggressive aggregation. If analysis of usage in the
query logging indicate that the join index is not being
used, it can be dropped and there is no impact to the
syntax of the user’s queries.

Work Flow Self-Regulation

A shared-nothing parallel database has a special
challenge when it comes to knowing how much new work it
can accept, and how to identify congestion that is starting
to build up inside one or more of the parallel units. With
the optimizer attempting to apply multiple dimensions of
parallelism to each query that it sees, it is easy to reach
very high resource utilization within a Teradata system,
even with just a handful of active queries.

Figure 10. A new row is inserted into an existing data block.

Data
Block

Data
Block

If there is space
on the cylinder…

Insert a row
and the data

block expands

Insert a row and the data block
splits across 2 cylinders

If there is no free space
on the cylinder…

Cylinder 1

Data Block

Cylinder 1

Data Block-1

Cylinder 2

Data Block-2

https://www.teradata.com
https://www.teradata.com

11

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Designed for stress, the Advanced Analytics Engine
is able to function with large numbers of users, a very
diverse mix of work, and a fully-loaded system. Being
able to keep on functioning full throttle under conditions
of extreme stress relies on internal techniques that
were built inside the database to automatically and
transparently manage the flow of work, while the system
stays up and productive.

Even though the data placement conventions in use
with the Advanced Analytics Engine lend themselves to
even placement of the data across AMPs, the data is
not always accessed by queries in a perfectly even way.
During the execution of a multi-step query, there will
be occasions when some AMPs require more resources
for certain steps than do other AMPs. For example,
if a query from an airline company site is executing a
join based on airport codes, you can expect whichever
AMP is performing the join for rows with Atlanta (ATL)
to need more resources than does the AMP that
is joining rows with Anchorage (ANC). Some of this
uneven processing demand has been reduced by the
optimizer splitting the data into separate spool files and
applying different join strategies for the busy airports
and the less busy ones. However, some unevenness of
processing demands will remain.

AMP-Level Control

The Advanced Analytics Engine manages the flow of
work that enters the system in a highly-decentralized
manner, in keeping with its shared-nothing architecture.
There is no centralized coordinator to become a
bottleneck. There is no message-passing between
AMPs to determine if it’s time to hold back new
requests. Rather, each AMP evaluates its own ability
to take on more work, and temporarily pushes back
when it experiences a heavier load than it can efficiently
process. And when an AMP does have to push back,
it does that for the briefest moments of time, often
measured in milliseconds.

This bottom-up control over the flow of work was
fundamental to the original architecture of the database
as designed. All-AMP step messages come down to
the AMPs, and each AMP will decide whether to begin
working on it, put it on hold, or ignore it. This AMP-level

mindfulness is the cornerstone of the database’s ability
to accept impromptu swings of very high and very low
demand, and gracefully and unobtrusively manage
whatever comes its way.

AMP Worker Tasks

AWTs are the tasks inside of each AMP that get the
database work done. This database work may be
initiated by the internal database software routines, such
as dead-lock detection or other background tasks. Or
the work may originate from a user-submitted query.
These pre-allocated AWTs are assigned to each AMP
at startup and, like taxi cabs queued up for fares at the
airport, they wait for work to arrive, do the work, and
come back for more work.

Because of their stateless condition, AWTs respond
quickly to a variety of database execution needs. There
is a fixed number of AWTs on each AMP. For a task to
start running it must acquire an available AWTs. Having
an upper limit on the number of AWTs per AMP keeps
the number of activities performing database work within
each AMP at a reasonable level. AWTs play the role of
both expeditor and governor.

As part of the optimization process, a query is broken
into one or many AMP execution steps. An AMP step
may be simple, such as read one row using a unique
primary index or apply a table level lock. Or an AMP step
may be a very large block of work, such as scanning
a table, applying selection criteria on the rows read,
redistributing the rows that are selected, and sorting the
redistributed rows.

The Message Queue

When all AMP worker tasks on an AMP are busy
servicing other query steps, arriving work messages are
placed in a message queue that resides in the AMP’s
memory. This is a holding area until an AWT frees up
and can service the message. This queue is sequenced
first by message work type, which is a category
indicating the importance of the work message. Within
work type the queue is sequenced by the priority of the
request the message is coming from.

https://www.teradata.com
https://www.teradata.com

12

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Messages representing a new query step are broadcast
to all participating AMPs by the PE. In such a case,
some AMPs may provide an AWT immediately, while
other AMPs may have to queue the message. Some
AMPs may dequeue their message and start working
on the step sooner than others. This is typical behavior
on a busy system where each AMP is managing its own
flow of work.

Once a message has either acquired an AWT or been
accepted onto the message queue across each AMP
in the dynamic BYNET group, then it is assumed that
each AMP will eventually process it, even if some AMPs
take longer than others. The sync point for the parallel
processing of each step is at step completion when
each AMP signals across the completion semaphore
that it has completed its part. The BYNET channels
set up for this purpose are discussed more fully in the
BYNET section of this paper.

Turning Away New Messages

Each AMP has flow control gates that monitor and
manage messages arriving from senders. There are
separate flow control gates for each different message
work type.7 New work messages will have their own flow
control gates, as will spawned work messages. The flow
control gates keep a count of the active AWTs of that
work type as well as how many messages are queued up
waiting for an AWT.

Once the queue of messages of a certain work type
grows to a specified length, new messages of that type
are no longer accepted and that AMP is said to be in
a state of flow control, as shown in Figure 15. The flow
control gate will temporarily close, pulling in the welcome
mat, and arriving messages will be returned to the
sender. The sender, often the PE, continues to retry the
message, until that message can be received on that
AMP’s message queue.

Because the acceptance and rejection of work messages
happens at the lowest level, in the AMP, there are no
layers to go through when the AMP can get back to
normal message delivery and processing. The impact
of turning on and turning off the flow of messages is
kept local—only the AMP hit by an over-abundance of
messages at that point in time throttles back temporarily.

Riding the Wave of Full Usage

Teradata was designed as a throughput engine, able to
exploit parallelism to maximize resource usage of each
request when only a few queries are active, while at the
same time able to continue churning out answer sets in
high demand situations. To protect overall system health
under extreme usage conditions, highly-decentralized
internal controls were put into the foundation, as
discussed in this section.

Figure 11. Flow control gates close when a threshold of messages is reached.

20 New Messages3 Spawned Messages

Flow control gate for broadcast
spawned messages is open

Flow control gate for broadcast
new messages is closed

Reject now

Retry later

…

https://www.teradata.com
https://www.teradata.com

13

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

The original architecture related to flow control and AMP
worker tasks has needed very little improvement or even
tweaking over the years. 80 AWTs per AMP is still the
default setting for new Teradata systems. The number
can be increased for more powerful platforms that aren’t
achieving full utilization or platforms with large number of
active queries with diverse response time expectations.
Message work types, the work message queue, and retry
logic all work the same as they always did.

There have been a few extensions in regard to AMP
worker tasks that have emerged over time, including:

	• Setting up reserve pools of AWTs exclusively for use
by tactical queries, protecting high priority work from
being impacted when there is a shortage of AWTs.

	• Automatic reserve pools of AWTs just for load
utilities that become available when the number
of AWTs per AMP is increased to a very high level,
intended to reduce resource contention between
queries and load jobs for enterprise platforms with
especially high concurrency

Workload Management

The second section in this whitepaper called attention
to the multifaceted parallelism available for queries
on the Advanced Analytics Engine. The subsequent
section discussed how the optimizer uses those parallel
opportunities in smart ways to improve performance
on a query-by-query basis. And the previous section
illustrated internal AMP-level controls to keep high
levels of user demand and an over-abundance of
parallelism from bringing the system to its knees.

In addition to those automatic controls at the AMP level,
Teradata has always had some type of system-level
workload management, mainly priority differences, that
are used by the internal database routines.

The Original Four Priorities

One of the challenges faced by the original architects of
Teradata Database was how to support maximum levels
of resource usage on the platform, and still get critical
pieces of internal database code to run quickly when
it needed to. For example, if there is a rollback taking
place due to an aborted transaction, it benefits the
entire system if the reversal of updates to clean up the
failure can be executed quickly.

It was also important to ensure that background tasks
running inside the database didn’t lag too far behind.
If city streets are so congested with automobile traffic
that the weekly garbage truck can’t get through and is
delayed for weeks at a time, a health crisis could arise.

The solution the original architects found was a simple
priority scheme that applied priorities to all tasks running
on the system. This rudimentary approach offered four
priority buckets, each with a greater weight than the one
that came before: L for Low, M for Medium, H for High
and R for rush. The default priority was medium, and
indeed most work ran at medium, and was considered
equally-important to other medium priority work that
was active.

However, database routines and even small pieces
of code could assign themselves one of the other
three priorities, based on the importance of the work.
Developers, for example, decided to give all END
TRANSACTION activity the rush priority, because
finishing almost-completed work at top speed frees
up valuable resources sooner, and was seen as critical
within the database. In addition, if the administrator
wanted to give a favored user a higher priority, all that
was involved was manually adding one of the priority
identifiers into the user’s account string.

Background tasks discussed in the section about space
management were designed to use priorities as well.
Some of these tasks, like the task that deletes transient
journal rows that are no longer needed, were designed
to start out at the low priority, but increase their priority
over time if the system was so busy that they were not
able to get their work accomplished. This approach kept
such tasks in the background most of the time, except
when their need to complete becomes critical.

https://www.teradata.com
https://www.teradata.com

14

WHITE PAPER BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

Impact of Mixed Workloads

The simple approach to priorities was all the internal
database tasks required. And early users of the
database were satisfied running all their queries at
the default medium priority. But requirements shifted
over time as Teradata users began to supplement their
traditional decision support queries with new types of
more varied workloads.

In the late 1990’s, a few Teradata sites began to issue
direct look-up queries against entities like their Inventory
tables or their customer databases, at the same time
as their standard decision support queries were running.
Call centers started using data in their Teradata
Database to validate customer accounts and recent
interactions. Tactical queries and online applications
blossomed, at the same time as more sites turned to
continuous loading to supplement their batch windows,
giving their end users more timely access to recent
activity. Service level goals reared their head.
Stronger, more flexible workload management was
required. Today it is typical for 90% of the queries to
execute in < 1 second.

Evolution of Workload Management

While the internal management of the flow of work
has changed little, the capabilities within system-level
workload management have expanded dramatically
over the years. As the first step beyond the original
four priorities, Teradata engineering developed a more
extensive priority scheduler composed of multiple resource
partitions and performance groups, and the flexibility of
assigning your own customized weighting values. These
custom weightings and additional enhancements make
it easier to match controls to business workloads and
priorities than the original capabilities designed more for
controlling internal system work.

Additional workload management features and options
that have evolved over the years include:

	• Ability to define workloads by username, client
logon ID, profile, the application they are using,
the database objects they are referencing or the
optimizer’s assessment of the query characteristics

	• Concurrency control mechanisms, called throttles,
that can be placed at multiple levels and tailored to
specific types of queries or users.

	• An improved and more effective priority scheduler to
accompany the Linux SLES 11 operating system that
can protect short, critical work more effectively from
more resource-intensive lower-priority jobs.

	• Rules to reject queries that are poorly written or that
are inappropriate to run at certain times of the day.

	• Ability to automatically change workload settings by
time of day or system conditions.

	• Ability to automatically reduce the priority of a
running query which exceeds the threshold of
resources consumed for its current priority.

	• Ability to give a percentage of resources to a
workload, either as a maximum percentage or an
“at least” percentage.

	• A user-friendly front-end GUI called Viewpoint
Workload Designer that supports ease of setup
and tuning.

Workload management in Teradata has proven to be
rapidly expanding area, indispensable to customers that
are running a wide variety of work on their Teradata
platform. While internal background tasks and subsets of
the database code continue to run at the four different
priority levels initially defined for them, many Teradata
sites have discovered that their end users’ experiences
are better and they can get more work through the
system when taking advantage of the wider workload
management choices today. And many do just that.

Managing Workload Management

To know whether the system is meeting required
performance or is being impacted by new, unplanned,
or poorly constructed workloads, it is critical to have
logging of system activity. The query logging in 18
tables and 993 columns records everything about query
execution including use of system resources, SQL, steps,
objects, and a textual description of the query execution
plan. The Resource Usage logging in 12 tables and
1878 columns records everything happening at the
system level including node, AMP, AWT, and device.

https://www.teradata.com
https://www.teradata.com

17095 Via Del Campo, San Diego, CA 92127     Teradata.com

The Teradata logo is a trademark, and Teradata is a registered trademark of Teradata Corporation and/or its affiliates in the U.S. and worldwide. Teradata continually
improves products as new technologies and components become available. Teradata, therefore, reserves the right to change specifications without prior notice. All features,
functions and operations described herein may not be marketed in all parts of the world. Consult your Teradata representative or Teradata.com for more information.

© 2022 Teradata Corporation     All Rights Reserved.     Produced in U.S.A.     09.22

WHITE PAPER THIS IS WHERE THE TITLE GOES, MAXIMUM TWO LINES

The logging levels are optional and may be combined
with the Performance Data Capture Routines (PDCR)
for historical analysis and capacity planning. No other
DBMS has the maturity of logging as the Vantage
Advanced Analytic Engine.

Conclusion

Foundations are important. Teradata’s ability to grow
in new directions and continue to sustain its core
competencies is a direct result of its strong, tried-and-
true foundation. As our engine has matured the same
fundamentals have been adapted to new technology
advances. For example, in initial releases, the AMP was
a physical computer which owned its own disk strive and
directly managed how data was located on its disks.
Today an AMP is a software virtual processor that
co-exists with other such virtual processors on the same
node all of whom share the node resources. Yet each
AMP maintains its shared-nothing characteristics, same
as in the first release.

The natural evolution towards the virtualization of key
database functionality is significant because it broadens
the usefulness of the Advanced Analytics Engine. For
much of its history, Teradata database software has run
on purpose-built hardware, where the underlying platform
has been optimized to support high throughput, critical
SLAs, and solid reliability. While those benefits remain well-
suited for enterprise platforms, this virtualization opens
the door for the Advanced Analytics Engine to participate
in more portable, less demanding solutions. Public or
private cloud architectures, as well as as-a-service
offerings, can now enjoy the core Advanced Analytics
Engine capabilities as described in this white paper.

This white paper attempts to familiarize you with a
few of the features that make up important building
blocks of the Advanced Analytics Engine, so you can
see for yourself the elegance and the durability of the
architecture. This paper points out recent enhancements
that have grown out of this original foundation, building
on it rather than replacing it.

These foundational components have such a widespread
consequence that they simply cannot be tacked on as
an afterthought. The database must be born with them.

About Teradata

Teradata is the connected multi-cloud data platform
company. Our enterprise analytics solve business
challenges from start to scale. Only Teradata gives
you the flexibility to handle the massive and mixed
data workloads of the future, today. Learn more at
Teradata.com.

https://www.teradata.com
https://www.teradata.com
https://www.teradata.com
https://www.facebook.com/Teradata
https://twitter.com/Teradata
https://www.linkedin.com/company/teradata
https://www.youtube.com/channel/UCV559dNBu0FRpuNLsrEKbzA
https://www.instagram.com/teradata/?hl=en
https://www.teradata.com/

