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Teradata’s Enduring Performance 
Advantage

Teradata’s ability to solve the most complex 
analytics problems of our day is unmatched.  
Available today in an array of deployment 
options, Teradata’s history has evolved from 
an on-prem analytics appliance where limited 
resources drove deep expertise in workload 
management and query optimization.  In the 
cloud, this same expertise translates into 
superior execution performance without the 
risk of costs escalating out of control.

Teradata customers from every industry and around 
the world depend on Teradata for predictable price 
performance and mission-critical reliability to run 
their business.  The performance offered by Vantage 
empowers them to run analytics that would be too 
expensive or time-consuming otherwise.   For example, 
allowing them to continuously run predictive models on 
every household in their markets rather than only simple 
models on a subset of customers.

To ensure that we continue to deliver on the promise 
of Teradata, we have continuously invested in the 
architecture of our core analytics engine.   As we have 
done so, we continue to follow key tenets that arose 
from being born at a time of scarcity because we believe 
that although resources in the cloud may be infinite, 
budgets are not.

The enduring performance advantage of the Advanced 
Analytics Engine is a direct result of early, somewhat 
unconventional design decisions made by a handful of 
imaginative architects.  Intended for a more technical 
audience, this paper describes and illustrates some of 
these key fundamental components of the Advanced 
Analytics Engine that are as critical to performance now 
as they were then, and upon which today’s features and 
capabilities rest.
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Discussions of these specific areas are included in 
this paper:

	• Multidimensional parallel capabilities

	• A parallel-aware query optimizer

	• The BYNET’s considerable contribution

	• A flexible and fast way to find and store data

	• Internal self-regulation of the flow of work

	• Managing the flow of work externally with 
Workload Management

It is important to note that the scope of this whitepaper 
is limited to important, foundational components of 
database performance. It is not a comprehensive 
discussion of all the aspects of the Teradata 
AdvanceAnalytics Engine or the platform.

Multidimensional Parallel Capabilities

Everything in Vantage is parallelized—from the entry 
of SQL statements to the smallest detail of their 
execution—to weed out any possible single point of 
control and to effectively eliminate the conditions that 
can breed gridlock in a system.  It is this foundational 
architecture, dating back to our humble beginnings, that 
continues to deliver unmatched performance and the 
best price per query in the market today.

The Teradata basic unit of parallelism is the AMP 
(Access Module Processor), a virtual processing unit 
that manages all database operations for its portion of 
a table’s data. Many AMPs are typically configured on a 
given node.  (20 to 40 or more are common.)  Everything 
that happens in a Teradata system is distributed across 
a pre-defined number of AMPs with each AMP acting 
like a microcosm of the database, supporting such things 
as data loading, reading, writing, journaling, and recovery 
for all the data that it owns.  (see Figure 1).  Importantly, 
parallel units work cooperatively together behind 
the scenes—an unusual strength that drives higher 
performance with minimal overhead. 

Types of Query Parallelism

While the AMP is the fundamental unit of parallelism, 
there are two additional parallel dimensions woven into 
the Advanced Analytics Engine, specifically for query 
performance. These are referred to here as “within-a-step” 
parallelism, and “multi-step” parallelism. The following 
sections describe these three dimensions of parallelism:

Parallel Execution Across AMPs

Parallel execution across AMPs involves breaking the 
request into subdivisions, and working on each subdivision 
at the same time, with one single answer delivered. Parallel 
execution can incorporate all or part of the operations 
within a query and can significantly reduce the response 
time of a request, particularly if the query or function 
reads and analyzes a large amount of data.  

Parallel execution is usually enabled in Teradata by 
hash-partitioning the data across all the AMPs defined 
in the system. Once data is assigned to an AMP, the AMP 
provides all the database services on its allocation of data 
blocks. All relational operations such as table scans, index 
scans, projections, selections, joins, aggregations, and 
sorts execute in parallel across the AMPs simultaneously. 
Each operation is performed on an AMP’s data 
independently of the data associated with the other AMPs.

.

Figure 1. Inside a unit of parallelism.
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Within-a-Step Parallelism

Within-a-step parallelism is when the optimizer carefully 
splits a request into a small number of high-level 
database operations  and dispatches these distinct 
operations for execution in a process called pipelining.  
Here each operation can continue on without waiting for 
the completion of the full results from the first operation.  
The relational-operator mix of a step is carefully chosen 
by the Teradata optimizer to avoid stalls within the 
pipeline. (see Figure 2) 

Multi-Step Parallelism

Multi-step parallelism is enabled by executing multiple 
“steps” of a query simultaneously, across all the 
participating units of parallelism. One or more tasks 
are invoked for each step on each AMP to perform the 
actual database operation. Multiple steps for the same 
query can be executing at the same time to the extent 
that they are not dependent on results of previous steps.

This automated multifaceted parallelism is not easy 
to choreograph unless it is planned for in the early 
stages of product evolution.  In addition to these three 
dimensions of parallelism for each query, such as 
described here, we will see additional elements below 
that ensure that Teradata customers get maximum 
value from every system.  It is important to note, the 
Advanced Analytics Engine applies these multiple 
dimensions of parallelism automatically, without user 
intervention, hints or special setup.

The figure shows four AMPs supporting a single query’s 
execution, and the query has been optimized into 7 
steps. Step 1.2 and Step 2.2 each demonstrate within-
a-step parallelism, where two different tables are 
scanned and joined together (three different operations 
are performed). The result of those three operations is 
pipelined into a sort and then a redistribution, all in one 
step. Steps1.1 and 1.2 together (as well as 2.1 and 2.2 
together) demonstrate multi-step parallelism, as two 
distinct steps are chosen to execute at the same time, 
within each AMP.

Multi-Statement Requests

In addition to the three dimensions of parallelism shown in 
Figure 3, Multi-Statement Requests allow several distinct 
SQL statements to be bundled together and sent to the 
optimizer as if they were one unit. These will be run in 
parallel as long as there are no dependencies among the 
statements.  More importantly, any sub-expressions that 
the different statements have in common will be executed 
once, and the results shared among them (see Figure 4).

Figure 2. Pipelining of 4 operations within one query step.
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Figure 3. Multiple types of parallelism combined.
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Parallel Use of I/O

In addition, the Advanced Analytic Engine supports 
synchronized scanning of large tables. This permits a new 
full-table scan to begin at the current point of an ongoing 
scan of the same large table in another session, thus 
reducing the I/O load and supporting higher concurrency.

Parallel-Aware Optimizer

Having an array of parallel techniques can turn into a 
disadvantage if they are not carefully applied around the 
needs of each request.  Orchestration of the different 
parallelization techniques is driven by our optimizer, which 
takes on a number of tasks to ensure optimal use of 
resources. The optimizer lives within a component called 
the “Parsing Engine” or PE. The default configuration uses 
two PEs per node with each capable of coordinating the 
query planning, coordination of execution, and returning 
results for 120 sessions each. A four node system would 
have 8 PEs supporting 960 sessions and a 24 node 
system would have 48 PEs supporting 5,760 sessions. 
This is both scalable and fault tolerant by eliminating 
single points of congestion or failure. 

Join Planning

Joining tables in a linear fashion (join table1 to table2, 
then join their result to table3, and so on) can have a 
negative impact on query time.   

Instead, the Teradata optimizer accesses and joins 
multiple tables simultaneously and also leverages 
different types of joins (e.g. indexed access, table scan) 
to build a more intelligent query plan. 

The Teradata optimizer seeks out tables within the 
query that have logical relationships between them and 
also groups tables that can be accessed and joined 
independently from the other subsets of tables. Those 
are often candidates to execute within parallel steps. 
Figure 5 illustrates the differences when optimizing a 
six-table join between a plan that is restricted to linear 
joins, and one that has the option of performing some of 
the joins in parallel.

Sizing up the Environment

In addition to the parallelism methods described above, 
the optimizer takes into account numerous other factors 
including the profile of the data itself, the number 
of AMPs on each of the nodes and the processing 
power of the underlying hardware.  Putting all this 
information together, the optimizer comes up with a 
price in terms of resources expected to be used for each 
of several candidate query plans, then picks the least 
costly candidate.  Considering many factors including 
movement of data, the lowest cost plan is the plan 
which will take the least system resources to execute on 
the wide variety of platforms that we support.

Hiding Complexity

Unlike other solutions, Teradata’s optimizer completely 
automates the complexity behind query planning.   
Users have complete freedom to submit everything from 
simple tactical queries to very complex ad hoc analytic 
queries and the optimizer will ensure that all requests 
are delivered in the most efficient manner.  This allows 
customers to build complex data models with dozens of 
joins which provides a richer dataset for analytics.

Evolution

Although the fundamentals have remained the same, the 
Advanced Analytics Engine has continued to evolve over 
time to meet customer needs.  This includes everything 
from the ability to support tables with no primary index 
to stage data for in-database transformation or push-
down processing by client tools or new types of joins. 

Figure 4. A multi-statement request.
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There are now nearly 20 join strategies that are chosen 
automatically by the optimizer. It will incrementally plan 
and execute when there is uncertainty about the size of 
an intermediate result set, and it will re-write queries to 
eliminate redundant logic.  The goal is always the same: 
ensuring that our customers enjoy the lowest cost per 
query in the industry.

Being Parallel in the Ecosystem

In today’s environment, data may reside in other file 
systems or data management systems.  Files in cloud 
storage may be defined as foreign tables. The optimizer 
will assign the task of reading and interpreting CSV, 
Parquet or JSON files to AMPs. As with everything else, 
the files making up a foreign table in cloud storage will be 
assigned across the AMPs to be read in parallel. 

Teradata’s Query Grid can be used to access data in 
other data management systems The Advance Analytics 
Engine’s optimizer can decide on whether to select the raw 
data or push down some of the selection and aggregation 
processing to the other platform to reduce the size of 
data to be retrieved. Meanwhile, the optimizer may have 

the AMPs performing other parts of the query processing 
until the data is retrieved from the other DBMS.

BYNET’s Considerable Contribution

Another important component of the Teradata 
architecture is referred to as the BYNet.  This acts as the 
interconnection between all of the independent parallel 
components.  (see Figure 6).  Originally implemented 
within the hardware of our on-premises systems, this 
functionality is now implemented directly into the cloud 
network facilities.  Beyond just passing messages, the 
BYNET is a bundle of intelligence and low-level functions 
that aid in efficient processing at practically each point 
in a query’s life. It offers coordination as well as oversight 
and control to every optimized query step.

In short, the BYNet acts as flight coordinator ensuring 
that the entire system is working in concert and managing 
situations as they arise.  This can include everything from 
ordering results from across parallel units, adjusting to 
hardware failures, or monitoring for points of congestion.  

Figure 5. A bushy query plan vs. a serial plan.
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Messaging

A key role of the BYNET is to support communication 
between the PE and AMPs and from AMPs to other 
AMPs. These simple message-passing requirements 
are performed using a low-level messaging approach, 
bypassing more heavyweight protocols for communication.

	• Sending a step from the PE to AMPs to initiate a 
query step

	• Redistributing rows from one AMP to another to 
support different join geographies

	• Sort/merging a final answer set from multiple AMPs

Even though message protocols are low-cost, the 
Advanced Analytics Engine goes further by minimizing 
interconnect traffic wherever possible. Same AMP, 
localized activity is encouraged wherever possible. 
AMP-based ownership of data keeps activities such as 
locking and some of the simple data processing local to 
the AMP. Hash partitioning that supports co-location 
of to-be-joined rows reduces data transporting prior to 
a join. All aggregations are ground down to the smallest 
possible set of sub-totals at the local (AMP) level first 
before being brought together globally via messaging. 

It is notable that another side effect of this extremely 
efficient coordination of AMPs is our ability to offer 
exceptionally faster performance for tactical queries 
than other vendors.  

BYNET Groups

Without the BYNET’s ability to combine and consolidate 
information from across all units of parallelism, each 
AMP would have to independently talk to each other 
AMP in the system about each query step that is 
underway. As the configuration grew, such a distributed 
approach to coordinating query work would quickly 
become a bottleneck.

Instead, BYNET groups create a dynamic relationship 
between AMPs that are working on a specific step 
which keeps the number of AMPs that must exchange 
messages down to the bare minimum.   As a step begins 
to execute, one or more channels are established that 
loosely associate all AMPs in the dynamic BYNET group 
that is executing the step. The channels use monitoring 
and signaling semaphores in order to communicate 
things like the completion or the success/failure of 
each participating AMP. If a tight coordination did not 
exist among AMPs in the same BYNET group, then 
the problem-free AMPs would continue to work on the 
doomed query step, eating up resources in unproductive 
ways (Figure 7).  In general, the only message that is set 
back to the PE is the final completion message whether 
the dynamic BYNET group is composed of three or 
3000 AMPs.

Final Answer Set Sort/Merge

Never needing to materialize a query’s final answer 
set inside the database has long been a Teradata 
differentiator. The final sort/merge of a query takes 
place within the BYNET as the answer set rows are being 
funneled up to the client as needed.  This happens at 
the AMP, Node and finally PE level with only the highest 
values being processed until the client needs more.  The 
final answer set never has to be brought together saving 
considerable resources. A potential “big sort” penalty 
has been eliminated—or actually, never existed.

Figure 6. AMPs and PEs communicate using messages.
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A Flexible, Fast Way to Find 
and Store Data

Another very important factor behind the enduring 
Teradata performance is how space is managed which 
is done by a sub-system that is simply referred to as 
the “file system.”  The file system is responsible for the 
logical organization and management of the rows, along 
with their reliable storage and retrieval.

The file system in Teradata was architected to be 
extremely adaptable, simple on the outside but 
surprisingly inventive on the inside. It was designed 
from Day One to be fluid and open to change. The file 
system’s built-in flexibility is achieved by means of:

	• Logical addressing, which allows blocks of data to 
be dynamically shifted to different physical locations 
when needed, with minimal impact to active work.

	• The ability for data blocks to expand and contract on 
demand, as a table matures.

	• An array of unobtrusive background tasks that do 
continuous space adjustments and clean-up.

Teradata was architected in such a way that no space 
is allocated or set aside for a table until such time as 
it is needed. Rows are stored in variable length data 
blocks that are only as big as they need to be. These 
data blocks can dynamically change size and can be 
moved to different locations on the cylinder or even to a 
different cylinder, without manual intervention or end-user 
knowledge. With the development of Teradata Virtual 
Storage (TVS), the database will assess the frequency of 
access of data and can move it between different speed 
storage media to optimize response time for the end user. 

This section takes a close look at how file system frees up 
the administrator from mundane data placement tasks, 
and at the same time provides an environment that is 
friendly to change.

How Data is Organized

For data stored inside the database, Teradata 
permanently assigns data rows to AMPs using a simple 
scheme that lends itself to an even distribution of 
data—hash partitioning. (Figure 8).  In addition to being 
a distribution technique, this hash approach to data 
placement serves as an indexing strategy.  

Figure 7. A completion semaphore.
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To retrieve a row, the primary index data value is passed 
to the hashing algorithm, which generates the two hash 
outputs: 1) the hash bucket which points to the AMP; and 
2) the hash-ID which helps to locate the row within the 
file system structure on that AMP. There is no space or 
processing overhead involved in either building a primary 
index or accessing a row through its primary index value, 
as no special index structure needs to be built.

Hashed data placement is very easy to use and requires 
no setup. The only effort a DBA makes is the selection 
of the columns that will comprise the primary index of 
the table such as customer number, order number or 
product key. From that point on, the process is completely 
automated. No files need to be allocated, sized, monitored, 
or named. No DDL needs to be created beyond specifying 
the primary index in the original CREATE TABLE 
statement. No unload-reload activity is ever required.

Once the owning AMP is identified by means of the 
hash bucket, the hash-ID is used to look up the physical 
location of the row on disk. Which virtual cylinder and 
sector holds the row is determined by means of a tree-like 
three-level indexing structure (as shown in Figure 9).   
It is enough to say here that the data is automatically 
and dynamically indexed down to the exact data block for 
exceptional retrieval speed.  

This is incredibly important, especially for tactical queries 
that are often leveraged by business applications.

Easy Accommodation of Data Growth

The Advanced Analytics Engine is built using a logical 
addressing model as a low impact way to adjust to data 
growth. Data for each table in a Teradata system is stored 
in flexibly-sized data blocks that are assigned to logical 
cylinders. The block assignment of a row is based on its 
hash value. If a block grows beyond a DBA-specified 
maximum size, it is automatically split to make room for 
more rows and the cylinder index is updated. If a logical 
cylinder gets full, blocks can be moved to a different 
logical cylinder and the cylinder indexes are updated.  
On retrieving a row, the hash of the primary index 
identifies the AMP, the index of cylinders in the AMP point 
to the cylinder, and the cylinder index points to the block 
to be read. Figure 10 explains this behavior visually.

This adaptable behavior delivers numerous benefits. 
Random growth is accommodated at the time it 
happens. Rows can easily be moved from one location 
to another without affecting in-flight work or any other 
data objects that reference that row. There is never a 
need to stop activity and re-organize the physical data 
blocks or adjust pointers.

Figure 8. A row’s primary index hash bucket points to the AMP 
that owns it.
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This flexibility to consolidate or expand data blocks 
anytime allows the Advanced Analytics Engine to 
do many space-related housekeeping tasks in the 
background and avoid table unloads and reloads common 
to fixed-sized page databases. This advantage increases 
database availability and translates to less maintenance 
tasks for the DBA.

Multi-level Row Partitioning

Added to this storage architecture is the ability to 
partition the table by one or more columns to make 
it faster to access data without the need of full table 
scans or the costly maintenance of secondary indexes.  
For example, a transaction table might be partitioned on 
transaction date, week, or month. If a query constrains 
on a period of time for those transactions, the optimizer 
will figure out which partitions need to be read, whether 
the table was partitioned on day week, month or other 
time period ranges. You could also add additional 
partitioning columns like country, district, or brand. A 
query with a constraint on either partitioning column 
or both will reduce the amount of data to be read to 
satisfy a query. The hashed cylinder and row access is 
accomplished within the defined partitions. 

Column Partitioning

Tables can also be stored with columns in separate 
partitions. This has the advantage of focusing I/O on 
just the columns of data needed in a query instead of 
the entire row. This also supports vertical compression 
techniques where a value is stored once for use in 
consecutive rows. Column partitioning can be combined 
with row partitioning to further reduce the amount of I/O 
needed to satisfy a query.

Indexes

The primary index for a table takes no space and by 
calculating the hash value of a constraint on that 
column, its row can usually be retrieved in a single I/O. 
Partitioning also requires no space and allows for a 
significant reduction in I/O and improvement in response 
time. The Advanced Analytics Engine also supports 
traditional secondary indexes. These are valuable with a 
frequently used, high cardinality column exists such as 
customer number on a table such as Orders where the 
logical primary index for the orders table is the Order_ID.  

Also supported are Join Indexes which are transparent 
to the user or their BI tools but are leveraged by the 
optimizer to eliminate join and aggregation processing.  
As the base tables are maintained these join indexes 
are automatically maintained.  If one join index is a more 
aggressive aggregation of another, after the base table 
is updated, the lower-level aggregation is re-calculated, 
then those values are aggregated to maintain the more 
aggressive aggregation.  If analysis of usage in the 
query logging indicate that the join index is not being 
used, it can be dropped and there is no impact to the 
syntax of the user’s queries.

Work Flow Self-Regulation

A shared-nothing parallel database has a special 
challenge when it comes to knowing how much new work it 
can accept, and how to identify congestion that is starting 
to build up inside one or more of the parallel units. With 
the optimizer attempting to apply multiple dimensions of 
parallelism to each query that it sees, it is easy to reach 
very high resource utilization within a Teradata system, 
even with just a handful of active queries.

Figure 10. A new row is inserted into an existing data block.
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Designed for stress, the Advanced Analytics Engine 
is able to function with large numbers of users, a very 
diverse mix of work, and a fully-loaded system. Being 
able to keep on functioning full throttle under conditions 
of extreme stress relies on internal techniques that 
were built inside the database to automatically and 
transparently manage the flow of work, while the system 
stays up and productive.

Even though the data placement conventions in use 
with the Advanced Analytics Engine lend themselves to 
even placement of the data across AMPs, the data is 
not always accessed by queries in a perfectly even way. 
During the execution of a multi-step query, there will 
be occasions when some AMPs require more resources 
for certain steps than do other AMPs. For example, 
if a query from an airline company site is executing a 
join based on airport codes, you can expect whichever 
AMP is performing the join for rows with Atlanta (ATL) 
to need more resources than does the AMP that 
is joining rows with Anchorage (ANC). Some of this 
uneven processing demand has been reduced by the 
optimizer splitting the data into separate spool files and 
applying different join strategies for the busy airports 
and the less busy ones. However, some unevenness of 
processing demands will remain.

AMP-Level Control

The Advanced Analytics Engine manages the flow of 
work that enters the system in a highly-decentralized 
manner, in keeping with its shared-nothing architecture. 
There is no centralized coordinator to become a 
bottleneck. There is no message-passing between 
AMPs to determine if it’s time to hold back new 
requests. Rather, each AMP evaluates its own ability 
to take on more work, and temporarily pushes back 
when it experiences a heavier load than it can efficiently 
process. And when an AMP does have to push back, 
it does that for the briefest moments of time, often 
measured in milliseconds.

This bottom-up control over the flow of work was 
fundamental to the original architecture of the database 
as designed. All-AMP step messages come down to 
the AMPs, and each AMP will decide whether to begin 
working on it, put it on hold, or ignore it. This AMP-level 

mindfulness is the cornerstone of the database’s ability 
to accept impromptu swings of very high and very low 
demand, and gracefully and unobtrusively manage 
whatever comes its way.

AMP Worker Tasks

AWTs are the tasks inside of each AMP that get the 
database work done. This database work may be 
initiated by the internal database software routines, such 
as dead-lock detection or other background tasks. Or 
the work may originate from a user-submitted query. 
These pre-allocated AWTs are assigned to each AMP 
at startup and, like taxi cabs queued up for fares at the 
airport, they wait for work to arrive, do the work, and 
come back for more work.

Because of their stateless condition, AWTs respond 
quickly to a variety of database execution needs. There 
is a fixed number of AWTs on each AMP. For a task to 
start running it must acquire an available AWTs. Having 
an upper limit on the number of AWTs per AMP keeps 
the number of activities performing database work within 
each AMP at a reasonable level. AWTs play the role of 
both expeditor and governor.

As part of the optimization process, a query is broken 
into one or many AMP execution steps. An AMP step 
may be simple, such as read one row using a unique 
primary index or apply a table level lock. Or an AMP step 
may be a very large block of work, such as scanning 
a table, applying selection criteria on the rows read, 
redistributing the rows that are selected, and sorting the 
redistributed rows.

The Message Queue

When all AMP worker tasks on an AMP are busy 
servicing other query steps, arriving work messages are 
placed in a message queue that resides in the AMP’s 
memory. This is a holding area until an AWT frees up 
and can service the message. This queue is sequenced 
first by message work type, which is a category 
indicating the importance of the work message. Within 
work type the queue is sequenced by the priority of the 
request the message is coming from.
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Messages representing a new query step are broadcast 
to all participating AMPs by the PE. In such a case, 
some AMPs may provide an AWT immediately, while 
other AMPs may have to queue the message. Some 
AMPs may dequeue their message and start working 
on the step sooner than others. This is typical behavior 
on a busy system where each AMP is managing its own 
flow of work.

Once a message has either acquired an AWT or been 
accepted onto the message queue across each AMP 
in the dynamic BYNET group, then it is assumed that 
each AMP will eventually process it, even if some AMPs 
take longer than others. The sync point for the parallel 
processing of each step is at step completion when 
each AMP signals across the completion semaphore 
that it has completed its part. The BYNET channels 
set up for this purpose are discussed more fully in the 
BYNET section of this paper.

Turning Away New Messages

Each AMP has flow control gates that monitor and 
manage messages arriving from senders. There are 
separate flow control gates for each different message 
work type.7 New work messages will have their own flow 
control gates, as will spawned work messages. The flow 
control gates keep a count of the active AWTs of that 
work type as well as how many messages are queued up 
waiting for an AWT.

Once the queue of messages of a certain work type 
grows to a specified length, new messages of that type 
are no longer accepted and that AMP is said to be in 
a state of flow control, as shown in Figure 15. The flow 
control gate will temporarily close, pulling in the welcome 
mat, and arriving messages will be returned to the 
sender. The sender, often the PE, continues to retry the 
message, until that message can be received on that 
AMP’s message queue.

Because the acceptance and rejection of work messages 
happens at the lowest level, in the AMP, there are no 
layers to go through when the AMP can get back to 
normal message delivery and processing. The impact 
of turning on and turning off the flow of messages is 
kept local—only the AMP hit by an over-abundance of 
messages at that point in time throttles back temporarily.

Riding the Wave of Full Usage

Teradata was designed as a throughput engine, able to 
exploit parallelism to maximize resource usage of each 
request when only a few queries are active, while at the 
same time able to continue churning out answer sets in 
high demand situations. To protect overall system health 
under extreme usage conditions, highly-decentralized 
internal controls were put into the foundation, as 
discussed in this section.

Figure 11. Flow control gates close when a threshold of messages is reached.

20 New Messages3 Spawned Messages

Flow control gate for broadcast
spawned messages is open

Flow control gate for broadcast
new messages is closed

Reject now

Retry later

…

https://www.teradata.com
https://www.teradata.com


13

WHITE PAPER  BORN TO BE PARALLEL, AND BEYOND

TERADATA.COM

The original architecture related to flow control and AMP 
worker tasks has needed very little improvement or even 
tweaking over the years. 80 AWTs per AMP is still the 
default setting for new Teradata systems. The number 
can be increased for more powerful platforms that aren’t 
achieving full utilization or platforms with large number of 
active queries with diverse response time expectations. 
Message work types, the work message queue, and retry 
logic all work the same as they always did.

There have been a few extensions in regard to AMP 
worker tasks that have emerged over time, including:

	• Setting up reserve pools of AWTs exclusively for use 
by tactical queries, protecting high priority work from 
being impacted when there is a shortage of AWTs.

	• Automatic reserve pools of AWTs just for load 
utilities that become available when the number 
of AWTs per AMP is increased to a very high level, 
intended to reduce resource contention between 
queries and load jobs for enterprise platforms with 
especially high concurrency

Workload Management

The second section in this whitepaper called attention 
to the multifaceted parallelism available for queries 
on the Advanced Analytics Engine. The subsequent 
section discussed how the optimizer uses those parallel 
opportunities in smart ways to improve performance 
on a query-by-query basis. And the previous section 
illustrated internal AMP-level controls to keep high 
levels of user demand and an over-abundance of 
parallelism from bringing the system to its knees.

In addition to those automatic controls at the AMP level, 
Teradata has always had some type of system-level 
workload management, mainly priority differences, that 
are used by the internal database routines.

The Original Four Priorities

One of the challenges faced by the original architects of 
Teradata Database was how to support maximum levels 
of resource usage on the platform, and still get critical 
pieces of internal database code to run quickly when 
it needed to. For example, if there is a rollback taking 
place due to an aborted transaction, it benefits the 
entire system if the reversal of updates to clean up the 
failure can be executed quickly.

It was also important to ensure that background tasks 
running inside the database didn’t lag too far behind. 
If city streets are so congested with automobile traffic 
that the weekly garbage truck can’t get through and is 
delayed for weeks at a time, a health crisis could arise.

The solution the original architects found was a simple 
priority scheme that applied priorities to all tasks running 
on the system. This rudimentary approach offered four 
priority buckets, each with a greater weight than the one 
that came before: L for Low, M for Medium, H for High 
and R for rush. The default priority was medium, and 
indeed most work ran at medium, and was considered 
equally-important to other medium priority work that 
was active.

However, database routines and even small pieces 
of code could assign themselves one of the other 
three priorities, based on the importance of the work. 
Developers, for example, decided to give all END 
TRANSACTION activity the rush priority, because 
finishing almost-completed work at top speed frees 
up valuable resources sooner, and was seen as critical 
within the database. In addition, if the administrator 
wanted to give a favored user a higher priority, all that 
was involved was manually adding one of the priority 
identifiers into the user’s account string.

Background tasks discussed in the section about space 
management were designed to use priorities as well. 
Some of these tasks, like the task that deletes transient 
journal rows that are no longer needed, were designed 
to start out at the low priority, but increase their priority 
over time if the system was so busy that they were not 
able to get their work accomplished. This approach kept 
such tasks in the background most of the time, except 
when their need to complete becomes critical.
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Impact of Mixed Workloads

The simple approach to priorities was all the internal 
database tasks required. And early users of the 
database were satisfied running all their queries at 
the default medium priority. But requirements shifted 
over time as Teradata users began to supplement their 
traditional decision support queries with new types of 
more varied workloads.

In the late 1990’s, a few Teradata sites began to issue 
direct look-up queries against entities like their Inventory 
tables or their customer databases, at the same time 
as their standard decision support queries were running. 
Call centers started using data in their Teradata 
Database to validate customer accounts and recent 
interactions. Tactical queries and online applications 
blossomed, at the same time as more sites turned to 
continuous loading to supplement their batch windows, 
giving their end users more timely access to recent 
activity. Service level goals reared their head.  
Stronger, more flexible workload management was 
required. Today it is typical for 90% of the queries to 
execute in < 1 second.

Evolution of Workload Management

While the internal management of the flow of work 
has changed little, the capabilities within system-level 
workload management have expanded dramatically 
over the years. As the first step beyond the original 
four priorities, Teradata engineering developed a more 
extensive priority scheduler composed of multiple resource 
partitions and performance groups, and the flexibility of 
assigning your own customized weighting values. These 
custom weightings and additional enhancements make 
it easier to match controls to business workloads and 
priorities than the original capabilities designed more for 
controlling internal system work.

Additional workload management features and options 
that have evolved over the years include:

	• Ability to define workloads by username, client 
logon ID, profile, the application they are using, 
the database objects they are referencing or the 
optimizer’s assessment of the query characteristics 

	• Concurrency control mechanisms, called throttles, 
that can be placed at multiple levels and tailored to 
specific types of queries or users.

	• An improved and more effective priority scheduler to 
accompany the Linux SLES 11 operating system that 
can protect short, critical work more effectively from 
more resource-intensive lower-priority jobs.

	• Rules to reject queries that are poorly written or that 
are inappropriate to run at certain times of the day.

	• Ability to automatically change workload settings by 
time of day or system conditions.

	• Ability to automatically reduce the priority of a 
running query which exceeds the threshold of 
resources consumed for its current priority.

	• Ability to give a percentage of resources to a 
workload, either as a maximum percentage or an  
“at least” percentage.

	• A user-friendly front-end GUI called Viewpoint 
Workload Designer that supports ease of setup  
and tuning.

Workload management in Teradata has proven to be 
rapidly expanding area, indispensable to customers that 
are running a wide variety of work on their Teradata 
platform. While internal background tasks and subsets of 
the database code continue to run at the four different 
priority levels initially defined for them, many Teradata 
sites have discovered that their end users’ experiences 
are better and they can get more work through the 
system when taking advantage of the wider workload 
management choices today. And many do just that.

Managing Workload Management

To know whether the system is meeting required 
performance or is being impacted by new, unplanned, 
or poorly constructed workloads, it is critical to have 
logging of system activity. The query logging in 18 
tables and 993 columns records everything about query 
execution including use of system resources, SQL, steps, 
objects, and a textual description of the query execution 
plan.  The Resource Usage logging in 12 tables and 
1878 columns records everything happening at the 
system level including node, AMP, AWT, and device.  
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The logging levels are optional and may be combined 
with the Performance Data Capture Routines (PDCR) 
for historical analysis and capacity planning. No other 
DBMS has the maturity of logging as the Vantage 
Advanced Analytic Engine.

Conclusion

Foundations are important. Teradata’s ability to grow 
in new directions and continue to sustain its core 
competencies is a direct result of its strong, tried-and-
true foundation.  As our engine has matured the same 
fundamentals have been adapted to new technology 
advances.  For example, in initial releases, the AMP was 
a physical computer which owned its own disk strive and 
directly managed how data was located on its disks. 
Today an AMP is a software virtual processor that 
co-exists with other such virtual processors on the same 
node all of whom share the node resources. Yet each 
AMP maintains its shared-nothing characteristics, same 
as in the first release.

The natural evolution towards the virtualization of key 
database functionality is significant because it broadens 
the usefulness of the Advanced Analytics Engine. For 
much of its history, Teradata database software has run 
on purpose-built hardware, where the underlying platform 
has been optimized to support high throughput, critical 
SLAs, and solid reliability. While those benefits remain well-
suited for enterprise platforms, this virtualization opens  
the door for the Advanced Analytics Engine to participate 
in more portable, less demanding solutions. Public or 
private cloud architectures, as well as as-a-service 
offerings, can now enjoy the core Advanced Analytics 
Engine capabilities as described in this white paper.

This white paper attempts to familiarize you with a 
few of the features that make up important building 
blocks of the Advanced Analytics Engine, so you can 
see for yourself the elegance and the durability of the 
architecture. This paper points out recent enhancements 
that have grown out of this original foundation, building 
on it rather than replacing it.

These foundational components have such a widespread 
consequence that they simply cannot be tacked on as 
an afterthought. The database must be born with them.

About Teradata

Teradata is the connected multi-cloud data platform 
company. Our enterprise analytics solve business 
challenges from start to scale. Only Teradata gives  
you the flexibility to handle the massive and mixed  
data workloads of the future, today. Learn more at 
Teradata.com.
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